IMPERFECCIONES EN LAS REDES CRISTALINAS
Las imperfecciones se encuentran dentro de la zona de ordenamiento de largo alcance (grano) y se clasifican de la siguiente manera:
DEFECTOS PUNTUALES (puntos defectuosos):
Defectos puntuales: Los defectos puntuales son discontinuidades de la red que involucran uno o quizá varios átomos. Estos defectos o imperfecciones,, pueden ser generados en el material mediante el movimiento de los átomos al ganar energía por calentamiento; durante el procesamiento del material; mediante la introducción de impurezas; o intencionalmente a través de las aleaciones.
Huecos: Un Hueco se produce cuando falta un átomo en un sitio normal. Las vacancias se crean en el cristal durante la solidificación a altas temperaturas o como consecuencia de daños por radiación. A temperatura ambiente aparecen muy pocas vacancias, pero éstas se incrementan de manera exponencial conforme se aumenta la temperatura.
Defectos intersticiales: Se forma un defecto intersticial cuando se inserta un átomo adicional en una posición normalmente desocupada dentro de la estructura cristalina. Los átomos intersticiales, aunque mucho más pequeños que los átomos localizados en los puntos de la red, aún así son mayores que los sitios intersticiales que ocupan; en consecuencia, la red circundante aparece comprimida y distorsionada. Los átomos intersticiales como el hidrógeno a menudo están presentes en forma de impurezas; los átomos de carbono se agregan al hierro para producir acero. Una vez dentro del material, el número de átomos intersticiales en la estructura se mantiene casi constante, incluso al cambiar la temperatura.
Defectos sustitucionales: Se crea un defecto sustitucional cuando se remplaza un átomo por otro de un tipo distinto. El átomo sustitucional permanece en la posición original. Cuando estos átomos son mayores que los normales de la red, los átomos circundantes se comprimen; si son más pequeños, los átomos circundantes quedan en tensión. En cualquier caso, el defecto sustitucional distorsiona la red circundante. Igualmente, se puede encontrar el defecto sustitucional como una impureza o como un elemento aleante agregado deliberadamente y, una vez introducido, el número de defectos es relativamente independiente de la temperatura.
IMPORTANCIA DE LOS DEFECTOS PUNTUALES: Los defectos puntuales alteran el arreglo perfecto de los átomos circundantes, distorsionando la red a lo largo de quizás cientos de espaciamientos atómicos, a partir del defecto. Una dislocación que se mueva a través de las cercanías generales de un defecto puntual encuentra una red en la cual los átomos no están en sus posiciones de equilibrio. Esta alteración requiere que se aplique un esfuerzo más alto para obligar a que la dislocación venza al defecto, incrementándose así la resistencia del material.
DEFECTOS LINEALES(dislocaciones) :
Defectos Lineales ( Dislocaciones):
Las dislocaciones son imperfecciones lineales en una red que de otra forma sería perfecta. Generalmente se introducen en la red durante el proceso de solidificación del material o al deformarlo. Aunque en todos los materiales hay dislocaciones presentes, incluyendo los materiales cerámicos y los polímeros, son de particular utilidad para explicar la deformación y el endurecimiento de los metales. Podemos identificar dos tipos de dislocaciones: la dislocación de tornillo y la dislocación de borde.
La dislocación de tornillo se puede ilustrar haciendo un corte parcial a través de un cristal perfecto, torciéndolo y desplazando un lado del corte sobre el otro la distancia de un átomo.
Una dislocación de borde se puede ilustrar haciendo un corte parcial a través de un cristal perfecto, separándolo y rellenando parcialmente el corte con un plano de átomos adicional. El borde inferior de este plano adicional representa la dislocación de borde.
Las dislocaciones mixtas tienen componentes tanto de borde como de tornillo, con una región de transición entre ambas. El vector de Burgers, sin embargo, se conserva igual para todas las porciones de la dislocación mixta.
IMPORTANCIA DE LAS DISLOCACIONES:
Aunque en algunos materiales cerámicos y polímeros puede ocurrir deslizamiento, el proceso de deslizamiento es de particular utilidad para entender el comportamiento mecánico de los metales.
En primer término, el deslizamiento explica por qué la resistencia de los metales es mucho menor que el valor predecible a partir del enlace metálico. Si ocurre el deslizamiento, sólo es necesario que se rompa en algún momento una pequeña fracción de todas las uniones metálicas a través de la interfase, por lo que la fuerza requerida para deformar el metal resulta pequeña.
Segundo, el deslizamiento le da ductilidad a los metales. Si no hay dislocaciones presentes, una barra de hierro sería frágil; los metales no podrían ser conformados utilizando los diversos procesos, que involucran la deformación para obtener formas útiles, como la forja.
En tercer lugar, controlamos las propiedades mecánicas de un metal o aleación al interferir el movimiento de las dislocaciones. Un obstáculo introducido en el cristal impedirá que en una dislocación se deslice, a menos que apliquemos mayor fuerza. Si es necesario aplicar una fuerza superior, entonces el metal resulta ser más resistente. Estos obstáculos pueden ser defectos puntuales o borde de grano.
En cuarto lugar, se puede prevenir el deslizamiento de las dislocaciones achicando el tamaño de grano o introduciendo átomos de diferente tamaño, que son las aleaciones.
En los materiales se encuentran enormes cantidades de dislocaciones. La densidad de dislocaciones, o la longitud total de dislocaciones por unidad de volumen, generalmente se utiliza para representar la cantidad de dislocaciones presentes. Densidades de dislocación de 10ˆ-6 cm/cm3 son típicas en los metales más suaves, en tanto que se pueden conseguir densidades de hasta 10ˆ-12 cm/cm3 deformando el material.
DEFECTOS PLANARES: (superficies externas y limite de grano)
Los defectos de superficie son las fronteras o planos que separan un material en regiones de la misma estructura cristalina pero con orientaciones cristalográficas distintas, y la superficie externa de un material. En las superficies externas del material la red termina de manera abrupta. Cada átomo de la superficie ya no tiene el mismo número de coordinación y se altera el enlace atómico. Asimismo, la superficie puede ser muy áspera, contener pequeñas muescas y quizá ser mucho más reactiva que el interior del material. En líquidos, los átomos en la superficie tienen mayor energía porque no tienen todos sus átomos vecinos. Esto hace que al tratar de minimizar la energía se tiende a reducir el numero de átomos en esta condición, por lo tanto tienden a reducir la superficie respecto al volumen, esto geométricamente corresponde a una esfera.
La microestructura de la mayor parte de los materiales está formada por muchos granos. Un grano es una porción del material dentro del cual el arreglo atómico es idéntico. Sin embargo, la orientación del arreglo atómico, o de la estructura cristalina, es distinta para cada grano. En la figura se muestran de manera esquemática tres granos; la red de cada uno de ellos es idéntica pero están orientados de manera distinta. La frontera de grano, que es la superficie que separa los granos, es una zona estrecha en la cual los átomos no están correctamente espaciados. Esto quiere decir que, en algunos sitios, los átomos están tan cerca unos de otros en la frontera de grano que crean una región de compresión y en otras áreas están tan alejados que crean una región de tensión.
FIGURA Los átomos cerca de las fronteras de los tres granos no tienen un espaciamiento o arreglo de equilibrio.
Un método para controlar las propiedades de un material es controlando el tamaño de los granos. Reduciendo el tamaño de éstos se incrementa su número y, por tanto, aumenta la cantidad de fronteras de grano. Cualquier dislocación se moverá solamente una distancia corta antes de encontrar una frontera de grano, incrementando así la resistencia del metal. Se puede relacionar el tamaño de grano con el tensión de fluencia del material. Los limites de grano tienen una influencia importante sobre las propiedades del metal, su numero y tamaño esta en funcion de la tasa de nucleacion y los indices de crecimiento de este. Una vez que el metal se ha solidificado, se puede modificar el tamaño y numero de granos, ya sea por deformacion o tratamiento termico, lo cual permitira que sus propiedades mecanicas varien considerablemente, la siguiente ecuacion muestra su influencia en el esfuerzo de cedencia:
ß = K1 + K2/ D ˆ- 2
Donde ß es el esfuerzo de Cedencia; K1 y K2 ctes del Material; D es el tamaño del Grano
Fuente: http://descom.jmc.utfsm.cl/proi/materiales/ESTRUCTURAS.htm#IMPERFECCIONESENLASREDESCRISTALINAS
Mario Pedraza
Electrónica del Estado Sólido Sección 2
No hay comentarios:
Publicar un comentario